Inhomogeneous Turbulence in the Vicinity of a Large Scale Co- Herent Vortex

نویسنده

  • F. Chillà
چکیده

– We study the statistics of turbulent velocity fluctuations in the neighbourhood of a strong large scale vortex at very large Reynolds number. At each distance from the vortex core, we observe that the velocity spectrum has a power law " inertial range " of scales and that intermittency – defined as the variation of the probability density function (PDF) of velocity increments as the length of the increment is varied – is also present. We show that the spectrum scaling exponents and intermittency characteristics vary with the distance to the vortex. They are also influenced by the large scale dynamics of the vortex. Introduction. – Much efforts have been devoted to the study of high Reynolds number turbulence, assuming the properties of local homogeneity and isotropy. Under these assumptions it has been shown [1] that, in between the integral scale at which energy is fed into the flow and the dissipative scale at which viscosity smoothes out the velocity gradients, there exists an " inertial range " where: (i) the velocity spatial power spectrum follows a power law E(k) ∼ ǫ 2/3 k −5/3 , (ii) the energy transfer rate ǫ is related to the third order structure function S 3 (r) = δu 3 (r) = −

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rossby-wave turbulence in a rapidly rotating sphere

We use a quasi-geostrophic numerical model to study the turbulence of rotating flows in a sphere, with realistic Ekman friction and bulk viscous dissipation. The forcing is caused by the destabilization of an axisymmetric Stewartson shear layer, generated by differential rotation, resulting in a forcing at rather large scales. The equilibrium regime is strongly anisotropic and inhomogeneous but...

متن کامل

2D Numerical Simulation of a Micro Scale Ranque-Hilsch Vortex Tube

  In this study, fluid flow and energy separation in a micro-scale Ranque-HilschVortex Tube are numerically investigated. The flow is assumed as 2D, steady,compressible ideal gas, and shear-stress-transport SST k-W is found to be a bestchoice for modeling of turbulence phenomena. The results are in a good agreementwith the experimental results reported in the literature. The results show that f...

متن کامل

Mixing characteristics of an inhomogeneous scalar in isotropic and homogeneous sheared turbulence

Turbulent mixing of an inhomogeneous passive scalar field is studied in the context of a nonpremixed reacting flow. Direct numerical simulations of an initial steplike scalar field subjected to homogeneous sheared turbulence have been performed and the results compared with those of the case of decaying isotropic turbulence. For both flow conditions, the gradient of the conserved scalar tends t...

متن کامل

Stall Vortex Shedding over a Compressor Cascade (RESEARCH NOTE)

The unstable flow with rotating-stall-like (RS) effects in a rotor-cascade of an axial compressor was numerically investigated. The RS was captured with the reduction in mass flow rate and increasing of exit static pressure with respect to design operating condition of the single rotor. The oscillatory velocity traces during the stall propagation showed that the RS vortices repeat periodically,...

متن کامل

Stall Vortex Shedding Over a Compressor Cascade (RESEARCH NOTE)

The unstable flow with rotating-stall-like (RS) effects in a rotor-cascade of an axialcompressor was numerically investigated. The RS was captured with the reduction in mass flow rateand increasing of exit static pressure with respect to design operating condition of the single rotor.The oscillatory velocity traces during the stall propagation showed that the RS vortices repeatperiodically, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999